#### По вопросам продаж и поддержки обращайтесь:

Архангельск +7 (8182) 45-71-35 Астрахань +7 (8512) 99-46-80 Барнаул +7 (3852) 37-96-76 Белгород +7 (4722) 20-58-80 Брянск +7 (4832) 32-17-25 Владивосток +7 (4232) 49-26-85 Волгоград +7 (8442) 45-94-42 Екатеринбург +7 (343) 302-14-75 Ижевск +7 (3412) 20-90-75 Казань +7 (843) 207-19-05 Калуга +7 (4842) 33-35-03

Кемерово +7 (3842) 21-56-70 Киров +7 (8332) 20-58-70 Краснодар +7 (861) 238-86-59 Красноярск +7 (391) 989-82-67 Курск +7 (4712) 23-80-45 Липецк +7 (4742) 20-01-75 Магнитогорск +7 (3519) 51-02-81 Москва +7 (499) 404-24-72 Мурманск +7 (8152) 65-52-70 Наб.Челны +7 (8552) 91-01-32 Ниж.Новгород +7 (831) 200-34-65 Новосибирск +7 (383) 235-95-48 Омск +7 (381) 299-16-70 Орел +7 (4862) 22-23-86 Оренбург +7 (3532) 48-64-35 Пенза +7 (8412) 23-52-98 Пермь +7 (342) 233-81-65 Ростов-на-Дону +7 (863) 309-14-65 Рязань +7 (4912) 77-61-95 Самара +7 (846) 219-28-25 Санкт-Петербург +7 (812) 660-57-09 Саратов +7 (845) 239-86-35 Сочи +7 (862) 279-22-65 Ставрополь +7 (8652) 57-76-63 Сургут +7 (3462) 77-96-35 Тверь +7 (4822) 39-50-56 Томск +7 (3822) 48-95-05 Тула +7 (4872) 44-05-30 Тюмень +7 (3452) 56-94-75 Ульяновск +7 (8422) 42-51-95 Уфа +7 (347) 258-82-65 Хабаровск +7 (421) 292-95-69 Челябинск +7 (351) 277-89-65 Ярославль +7 (4852) 67-02-35

сайт: sibneft.pro-solution.ru | эл. почта: sna@pro-solution.ru телефон: 8 800 511 88 70



### ДАТЧИК РАСХОДА ЭРИС.В(Л)Т РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ 230.01.00.000 РЭ

Настоящее руководство по эксплуатации распространяется на датчик расхода ЭРИС.В(Л)Т, входящий в состав расходомера электромагнитного ЭРИС.В, Государственный реестр № 12326-08 и содержит описание его устройства, принципа действия, технических характеристик и сведений, необходимых для правильной и безопасной эксплуатации изделия.

Руководство по эксплуатации состоит из следующих частей:

| 1 Описание и работа изделия   | 3  |
|-------------------------------|----|
| 2 Использование по назначению |    |
| 3 Поверка                     | 15 |
| 4 Техническое обслуживание    | 15 |
| 5 Хранение                    | 16 |
| 6 Транспортирование           | 17 |

К настоящему документу приложены:

- Расходомер электромагнитный ЭРИС.ВЛТ. Монтажный чертёж (230.00.00.000 МЧ, лист 1, 2, 4).
- Датчик расхода ЭРИС.В(Л)Т. Схема электрическая принципиальная (230.01.00.000 ЭЗ).
- Плата преобразования. Схема электрическая принципиальная (230.01.06.000 ЭЗ).

К работе по монтажу и обслуживанию датчика расхода ЭРИС.В(Л)Т должны допускаться лица, прошедшие инструктаж по технике безопасности при работе с электроприборами, квалификация – слесарь КИП и А (оператор) не ниже четвёртого разряда.

Датчик расхода ЭРИС. $B(\Pi)$ Т не оказывает вредного воздействия на окружающую среду.

Датчик расхода ЭРИС.В(Л)Т соответствует обязательным требованиям ТУ 39-1258-88 "Расходомеры электромагнитные ЭРИС.В ".

#### 1 Описание и работа изделия

- 1.1 Назначение изделия
- 1.1.1 Датчик расхода ЭРИС.В(Л)Т (далее датчик расхода) предназначен для линейного преобразования объёмного расхода протекающей жидкости в трубопроводах (методом "площадь-скорость" по ГОСТ 8.361-79) в электрический непрерывный выходной сигнал частотой от 0 до 250 Гц и токовый сигнал 4-20 мА, и может работать в составе счётчиков тепловой энергии типа СТС ТУ 4218-008-0148346-93, или в составе любых информационно-измерительных систем, воспринимающих частотные (импульсные) или токовые сигналы.

В составе расходомера ЭРИС.В датчик расхода работает с блоком питания и индикации БПИ.В1(далее – блок БПИ.В1) или с блоком вычисления расхода микропроцессорным БВР.М (далее – блок БВР.М) ТУ 39-0148346-001-92.

Датчик расхода имеет две модификации:

- ЭРИС.ВТ для трубопроводов диаметром от 100 до 1000 мм, требующий остановку подачи измеряемой среды при техническом обслуживании датчика расхода;
- ЭРИС.ВЛТ для трубопроводов диаметром от 200 до 2000 мм, позволяющий проводить техническое обслуживание датчика расхода без остановки подачи измеряемой среды.
- 1.1.2 Область применения промышленные предприятия, объекты коммунально-бытового назначения.
- 1.1.3 Датчик расхода устанавливается в невзрывоопасных помещениях и на открытом воздухе под навесом при температуре окружающего воздуха от минус 45 до плюс 50 °C и относительной влажности до 95 % при температуре 35 °C.
- 1.1.4 По устойчивости к внешним воздействиям датчик расхода соответствует следующим требованиям:
- по защищенности от проникновения внешних твердых предметов и воды степень защиты IP57 по ГОСТ 14254-96;
- по прочности к воздействиям синусоидальных вибраций группа исполнения N4 по ГОСТ 12997-84;

- по устойчивости к воздействию атмосферного давления группа исполнения Р1 по ГОСТ 12997-84;
- по устойчивости к воздействию температуры окружающего воздуха группа исполнения С4 по ГОСТ 12997-84, но для температуры окружающего воздуха от минус 45 до плюс 50 °C.
- 1.1.5 Датчик расхода соответствует требованиям документа "Правила устройства электроустановок. ПУЭ" для стационарных установок и допускает эксплуатацию во взрывоопасных зонах помещений классов В-1а, В-1б, В-1г. Взрывобезопасность датчика расхода обеспечивается отсутствием в электронной схеме элементов нормально искрящих и подверженных нагреву выше 80 °C (при температуре окружающей среды 40 °C), а также степенью защиты оболочки IP57 по ГОСТ 14254-96.

Датчик расхода должен применяться в полном соответствии с требованиями документов "Правила устройств электроустановок" (ПУЭ глава 7-3), "Правила технической эксплуатации электроустановок потребителей" (ПТЭЭП глава 3.4), других нормативных документов, регламентирующих применение оборудования во взрывоопасных зонах.

### 1.2 Технические характеристики

- 1.2.1 Измеряемая среда невзрывоопасная электропроводящая жидкость, не содержащая растворенный сероводород. Измеряемая среда должна быть неагрессивной к стали марки 12X18H10T и 20X13 по ГОСТ 5632-72, содержать механические примеси не более  $0.5 \text{ г/дм}^3$ , иметь удельную электрическую проводимость от  $10^{-3}$  до 10 Cm/m, температура измеряемой среды от 0 до 150 °C.
  - 1.2.2 Основные параметры датчика расхода приведены в таблице 1.
  - 1.2.3 Выходная частота датчика расхода равная:
- 250  $\Gamma$ ц, соответствует верхнему пределу измерения в соответствии с диаметром условного прохода трубопровода (Д<sub>v</sub>);
  - 0 Гц, соответствует значению расхода равного нулю.
- 1.2.4 Токовый выход 4-20 мА, гальванически развязанный от остальных цепей и корпуса датчика расхода, соответствует диапазону расходов от 0 до  $Q_{3 \text{ max}}$ .

Таблица 1

| Типопозмор и мо  | Пиомото молор              | Услов-        | Пионорон о           | KOTI III IOTOLIII                              | Расположение         |
|------------------|----------------------------|---------------|----------------------|------------------------------------------------|----------------------|
| Типоразмер и мо- | Диаметр услов-             |               |                      | Диапазон эксплуатационных расходов, $M^3/\Psi$ |                      |
| дификация датчи- | ного прохода трубопровода, | ное дав-      | онных расходов, м /ч |                                                | точки измерения (L), |
| ка расхода       | Труоопровода,<br>Ду, мм    | ление,<br>МПа | $Q_{9min}$           | $Q_{\text{9max}}$                              | $R(\coprod_{V}/2)$   |
| ЭРИС.ВТ-100      | 100                        | 1,6           | 5                    | 200                                            | R                    |
| ЭРИС.ВТ -150     | 150                        | 1,6           | 10                   | 450                                            | R                    |
| ЭРИС.ВТ -200     | 200                        | 1,6           | 20                   | 800                                            | R                    |
| ЭРИС.ВТ -300     | 300                        | 1,6           | 30                   | 1250                                           | R                    |
| ЭРИС.ВТ -400     | 400                        | 1,6           | 50                   | 2000                                           | 0,242R*              |
| ЭРИС.ВТ -500     | 500                        | 1,6           | 80                   | 3125                                           | 0,242R*              |
| ЭРИС.ВТ -600     | 600                        | 1,6           | 100                  | 4500                                           | 0,242R*              |
| ЭРИС.ВТ -700     | 700                        | 1,6           | 150                  | 6125                                           | 0,242R*              |
| ЭРИС.ВТ -800     | 800                        | 1,6           | 200                  | 8000                                           | 0,242R*              |
| ЭРИС.ВТ-1000     | 1000                       | 1,6           | 300                  | 12500                                          | 0,242R*              |
| ЭРИС.ВЛТ -200    | 200                        | 4.0           | 20                   | 800                                            | R **                 |
| ЭРИС.ВЛТ -300    | 300                        | 4,0           | 30                   | 1250                                           | L ***                |
|                  | 400                        |               | 50                   | 2000                                           |                      |
|                  | 500                        |               | 80                   | 3125                                           |                      |
| ЭРИС.ВЛТ-        | 600                        | 4.0           | 100                  | 4500                                           | 0.242D               |
| 400-1000         | 700                        | 4,0           | 150                  | 6125                                           | 0,242R               |
| 100 1000         | 800                        |               | 200                  | 8000                                           |                      |
|                  | 1000                       |               | 300                  | 12500                                          |                      |
| ЭРИС.ВЛТ-1200    | 1200                       |               | 300                  | 12500                                          |                      |
| ЭРИС.ВЛТ-1400    | 1400                       |               | 500                  | 20000                                          |                      |
| ЭРИС.ВЛТ-1600    | 1600                       | 4,0           | 800                  | 31250                                          | L***                 |
| ЭРИС.ВЛТ-1800    | 1800                       |               | 800                  | 31250                                          |                      |
| ЭРИС.ВЛТ-2000    | 2000                       |               | 1000                 | 45000                                          |                      |

<sup>\*</sup> По специальному заказу может быть исполнение в "варианте" R

- 1.2.5 Основная относительная погрешность датчика расхода по частотному выходу не превышает:
- при градуировке датчика расхода натурным способом ±1,5 % во всем диапазоне эксплуатационных расходов;
- при градуировке датчика расхода имитационным способом ±1,5 % в диапазоне расходов от  $0.04Q_{9 \text{ max}}$  до  $Q_{9 \text{ max}}$  и  $\pm 3 \%$  в диапазоне расходов от  $Q_{9 \text{ min}}$  до  $0.04Q_{9 \text{ max}}$ .
- 1.2.6 Основная приведенная погрешность датчика расхода по токовому выходу в диапазоне эксплуатационных расходов не превышает  $\pm 1,5$  %.

<sup>\*\*</sup> Точка измерения в положении 830 по шкале "Ду", т.е.  $L=0.242~R^{830}(100~\text{мм})$  \*\*\* Точка измерения в положении 1000 по шкале "Ду", т.е.  $L=0.242~R^{1000}(121~\text{мм})$ 

- 1.2.7 Дополнительная погрешность датчика расхода от изменения температуры измеряемой среды от  $20\,^{\circ}$ С до любого значения в диапазоне рабочих температур, не более  $\pm 0.065\,\%$  на каждые  $10\,^{\circ}$ С изменения температуры.
- 1.2.8 Дополнительная погрешность датчика расхода от изменения температуры окружающего воздуха от  $20\,^{\circ}$ С до любого значения в диапазоне рабочих температур, не более  $\pm 0.1\,\%$  на каждые  $10\,^{\circ}$ С изменения температуры.
- 1.2.9 Дополнительная погрешность датчика расхода от изменения электрической проводимости измеряемой среды в 10 раз в диапазоне удельной электрической проводимости от  $10^{-3}$  до 10 См/м, не превышает 0.2 пределов основной погрешности.
- 1.2.10 Частотная выходная информационная цепь датчика расхода, гальванически развязанная от остальных цепей датчика расхода и его корпуса, представлена периодическим импульсным изменением сопротивления (оптронный ключ) и имеет параметры:
- 1.2.11 Питание датчика расхода осуществляется стабилизированным напряжением постоянного тока (24±1) В, от блока БПИ.В1 или любого другого источника питания, с гальванически развязанными цепями, обеспечивающего нагрузочный ток не менее 300 мА.
  - 1.2.12 Параметры токового выхода:
  - напряжение источника питания постоянного тока, Uп, B ......  $(24 \pm 4)$ ;
  - нагрузочное сопротивление,  $R_H$ , Oм, не более ......  $R_H = \frac{U_{\Pi} 11}{24 \cdot 10^{-3}}$ .
  - 1.2.13 Длина линии связи:

- 1.2.14 Потребляемая мощность датчиком расхода, Вт, не более 5.
- 1.2.15 Масса датчика расхода, без комплекта монтажных частей, кг, не более:
  - ЭРИС.ВТ-100...1000 ...... 6;

  - 1.2.16 Габаритные размеры датчика расхода, приведены в приложении А.
  - 1.2.17 Средняя наработка на отказ не менее 75000 ч.
  - 1.2.18 Средний срок службы не менее 12 лет.
  - 1.3 Комплектность

1.3.1 Комплектность поставки датчика расхода приведена в таблице 2. Таблица 2

| Обозначение            | Наименование      | Кол. | Типоразмер и мо- | Приме-      |
|------------------------|-------------------|------|------------------|-------------|
|                        |                   |      | дификация        | чание       |
| 314.01.00.000-1019     | Датчик расхода    | 1    | ЭРИС.ВТ-1001000  | В соовет-   |
| 230.01.00.000-01       |                   | 1    | ЭРИС.ВЛТ         | вии с зака- |
| или                    |                   |      |                  | 30M         |
| 230.01.00.000-02       |                   |      |                  |             |
| 314.01.05.000          | Комплект мон-     | 1    | ЭРИС.ВТ-100      |             |
| 314.01.05.000-0109     | тажных частей     | 1    | ЭРИС.ВТ-1501000  |             |
| 230.01.05.000          |                   | 1    | ЭРИС.ВЛТ         |             |
| 314.01.06.000          | Комплект запас-   | 1    | ЭРИС.ВТ-1001000  |             |
| 230.01.07.000          | ных частей        | 1    | ЭРИС.ВЛТ         |             |
| 230.01.00.000 РЭ       | Датчик расхода    |      |                  |             |
|                        | ЭРИС.В(Л)Т. Ру-   |      |                  |             |
|                        | ководство по экс- |      |                  |             |
|                        | плуатации         | 1    |                  |             |
| 230.01.00.000 ПС       | Паспорт           | 1    |                  |             |
| 230.00.00.000 МИ       | Рекомендация.     |      |                  |             |
|                        | ГСИ. Расходоме-   |      |                  |             |
|                        | ры электромаг-    |      |                  |             |
|                        | нитные ЭРИС.В.    |      |                  |             |
|                        | Методика поверки  | 1*   |                  |             |
|                        | I                 | I    | I                | I           |
| * Поставляется по спет | циальному заказу  |      |                  |             |

тоставляется по специальному заказ

### 1.4 Устройство и работа

1.4.1 Датчик расхода преобразует объёмный расход жидкости в электрический непрерывный частотный сигнал 0-250 Гц и токовый выходной сигнал 4-20 мА. Номинальный статический коэффициент преобразования датчика расхода по частотному выходу  $K_{дp}$  определяется в соответствии с диаметром условного прохода трубопровода ( $Q_y$ ) и верхним пределом измерения расхода ( $Q_{3 \text{ max}}$ ), значения коэффициентов приведены в таблице 3.

Таблица 3

| Датчик расхода            | Диаметр условно-<br>го прохода трубо-<br>провода, Ду, мм | Верхний предел измерения, Q $_{3 \text{ max}}$ , м $^3$ /ч | Номинальный статический коэффициент $K_{дp}$ , имп/дм <sup>3</sup> |
|---------------------------|----------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------|
| ЭРИС.ВТ-100               | 100                                                      | 200                                                        | 4,5                                                                |
| ЭРИС.ВТ-150               | 150                                                      | 450                                                        | 2                                                                  |
| ЭРИС.ВТ-200<br>ЭРИС.ВЛТ   | 200                                                      | 800                                                        | 1,125                                                              |
| ЭРИС.ВТ-300<br>ЭРИС.ВЛТ   | 300                                                      | 1250                                                       | 0,72                                                               |
| ЭРИС.ВТ-400,<br>ЭРИС.ВЛТ  | 400                                                      | 2000                                                       | 0,45                                                               |
| ЭРИС.ВТ-500,<br>ЭРИС.ВЛТ  | 500                                                      | 3125                                                       | 0,288                                                              |
| ЭРИС.ВТ-600,<br>ЭРИС.ВЛТ  | 600                                                      | 4500                                                       | 0,2                                                                |
| ЭРИС.ВТ-700,<br>ЭРИС.ВЛТ  | 700                                                      | 6125                                                       | 0,1469                                                             |
| ЭРИС.ВТ-800,<br>ЭРИС.ВЛТ  | 800                                                      | 8000                                                       | 0,1125                                                             |
| ЭРИС.ВТ-1000,<br>ЭРИС.ВЛТ | 1000<br>1000, 1200                                       | 12500                                                      | 0,072                                                              |
| ЭРИС.ВЛТ                  | 1400                                                     | 20000                                                      | 0,045                                                              |
| ЭРИС.ВЛТ                  | 1600, 1800                                               | 31250                                                      | 0,0288                                                             |
| ЭРИС.ВЛТ                  | 2000                                                     | 45000                                                      | 0,02                                                               |

1.4.2 Общий вид датчика расхода, установленного на трубопроводе, приведён в приложении А.

Датчик расхода состоит из двух основных составных частей: преобразователя расхода электромагнитного зондового типа (далее - преобразователь расхода) и смонтированного на нём преобразователя нормирующего передающего (корпус платы преобразования).

Кран шаровой, устанавливающийся вместе с датчиком расхода ЭРИС.ВЛТ, обеспечивает ввод чувствительного элемента (измерительного зонда) преобразователя расхода в трубопровод без остановки подачи измеряемой среды.

Чувствительный элемент преобразователя расхода, установленного на трубопровод с номинальным диаметром Ду (см. таблицу 3), расположен:

- на оси трубопровода для датчиков расхода на Ду от 100 до 300 мм;
- на расстоянии 0,242R от внутренней стенки трубопровода для датчиков расхода на Ду от 400 до 1000 мм;
- на расстоянии  $0,242R^{\frac{7}{2}1000}$  от внутренней стенки трубопровода для датчика расхода ЭРИС.ВЛТ на Ду от 1200 до 2000 мм.
- 1.4.3 Работа датчика расхода поясняется схемой электрической функциональной, приведённой в приложении Б. Принцип действия датчика основан на законе электромагнитной индукции. При взаимодействии электромагнитного поля, создаваемого прямоугольным импульсным током возбудителя ФВ в обмотках возбуждения ОВ, с движущейся жидкостью, в ней наводится ЭДС электромагнитной индукции, амплитуда которой пропорциональна скорости движения жидкости, а следовательно расходу, и току в обмотках возбуждения. ЭДС снимается через электроды Э1 и Э2 и поступает в схему платы преобразования.

Плата преобразования усиливает сигнал с электродов  $\mathbf{31}$  и  $\mathbf{32}$  предварительным дифференциальным усилителем  $\mathbf{Y1}$  с автоматической коррекцией "нуля", производит выделение из него полезной составляющей сигнала  $U_n$ , пропорциональной скорости движения жидкости и току возбуждения, с помощью устройств "вырезки"  $\mathbf{B}\mathbf{b}\mathbf{I}\mathbf{P}$  и "выборки"  $\mathbf{B}\mathbf{b}\mathbf{I}\mathbf{b}$ , усиливает и преобразует ее в постоянное напряжение усилителем  $\mathbf{Y2}$  и фильтром  $\mathbf{\Phi}\mathbf{\Phi}\mathbf{1}$ . Преобразователь напряжений в частоту  $\mathbf{\Pi}\mathbf{H}\mathbf{q}$  осуществляет преобразование отношения напряжений полезного сигнала  $U_n$ , поступающего с фильтра  $\mathbf{\Phi}\mathbf{\Phi}\mathbf{1}$  и опорного сигнала  $U_{0n}$ , пропорционального току возбуждения и поступающего с фильтра  $\mathbf{\Phi}\mathbf{\Phi}\mathbf{2}$ , в импульсную последовательность частотой 0-250  $\Gamma$ ц, линейно зависимую от скорости движения жидкости. Кварцевый генератор  $\Gamma$  и формирователь сигна—

-лов **ФСУ** синхронизируют работу всех элементов платы преобразования, управляют возбудителем **ФВ** и задают опорную частоту для преобразователя напряжений в частоту **ПНЧ**. Преобразователь питания **ПП** формирует из напряжения +24 В, поступающего от внешнего источника, напряжения +15 В, +9 В, +5 В, минус 15 В, минус 9 В для питания схемы платы преобразования. Оптронный ключ **ОП** формирует гальванически развязанную выходную цепь для передачи частотного сигнала 0-250 Гц в блок БПИ.В1 или в любой другой прибор информационно-измерительной системы, воспринимающий такой сигнал. Преобразователь **ПЧТ** формирует гальванически развязанный токовый сигнал 4-20 мА, в соответствии с поступающей на него частотой 0-250 Гц.

Настройка выходной частоты платы преобразования на конкретный типоразмер датчика расхода (нормирование статического коэффициента преобразования) производится регулировкой коэффициента усиления усилителя полезного сигнала **У2**.

- 1.5 Маркировка и пломбирование
- 1.5.1 На табличке, прикрепленной к корпусу датчика расхода, указаны: обозначение типоразмера и модификации датчика расхода, наименование предприятия-изготовителя, обозначение технических условий, заводской номер, условное давление, стрелка с указанием направления потока жидкости, степень защиты от проникновения внешних твердых предметов и воды IP57 по ГОСТ 14254-96, год и квартал изготовления.
- 1.5.2 Места пломбирования датчика расхода указаны на монтажном чертеже 230.00.00.000 МЧ.

#### 2 Использование по назначению

- 2.1 Подготовка изделия к использованию
- 2.1.1 Меры безопасности
- 2.1.1.1 ЗАПРЕЩАЕТСЯ УСТАНАВЛИВАТЬ ДАТЧИК РАСХОДА НА ТРУБОПРОВОДАХ С ДАВЛЕНИЕМ ВЫШЕ УСЛОВНОГО ДАВЛЕНИЯ ДАТЧИКА РАСХОДА.

- 2.1.1.2 Монтаж и демонтаж датчика расхода ЭРИС.ВТ-100...1000 производить только при отсутствии давления в участке трубопровода с установленным датчиком расхода.
- 2.1.1.3 Монтаж и демонтаж датчика расхода ЭРИС.ВЛТ производить только при положении шарового крана "Закрыто" и после "стравливания" давления ниппелем. Монтаж и демонтаж шарового крана производить только при отсутствии давления в участке трубопровода с установленным шаровым краном.
- 2.1.1.4 Перед вводом датчика расхода в эксплуатацию необходимо убедиться в надежности подключения датчика к местному контуру заземления. Наименьшее сечение медных заземляющих проводников (неизолированных) должно быть 4 мм<sup>2</sup>, а величина сопротивления заземляющего проводника должна быть не более 4 Ом согласно требованиям документа "Правила устройства электроустановок" ПУЭ.
- 2.1.1.5 Трубопровод в месте установки датчика расхода не должен испытывать постоянно действующих вибраций и тряски. Допустимый уровень вибрации частотой до 80 Гц и амплитудой до 0,15 мм.
- 2.1.1.6 Допускается промывка трубопровода с датчиком расхода потоком жидкости обратного направления.
- 2.1.2 После транспортирования при низких температурах перед вводом в эксплуатацию необходимо выдержать датчик расхода в рабочих условиях в течение одного часа.
- 2.1.3 Перед подготовкой датчика расхода к работе проверить комплектность, наличие запасных частей, заполнение паспорта.

#### 2.2 Порядок установки

2.2.1 Датчик расхода при отсутствии устройств, стабилизирующих эпюру потока, устанавливается на прямолинейном участке трубопровода, расположенном под любым углом к горизонтальной плоскости при условии полного заполнения его измеряемой средой. Длина прямолинейного участка перед

измерительным сечением должна быть не менее значения, указанного на монтажном чертеже 230.00.00.000 MЧ.

Длина прямолинейного участка трубопровода за измерительным сечением должна быть не менее пяти диаметров трубопровода.

- 2.2.2 Установка датчика расхода производится согласно монтажного чертежа 230.00.00.000 МЧ в соответствии с типоразмером.
- 2.2.3 Монтаж вставки датчиков расхода ЭРИС.ВТ-100...200, фланца датчика расхода ЭРИС.ВЛТ и бобышки датчиков расхода ЭРИС.ВТ-100...1000 должны производиться со снятым датчиком расхода. После чего необходимо произвести установку датчика расхода на трубопроводе таким образом, чтобы стрелка на его корпусе совпадала с направлением потока жидкости в трубопроводе. Для датчика расхода ЭРИС.ВЛТ перевести шаровой кран в положение "открыто" и ввести чувствительный элемент в полость трубопровода, вращая гайку передвижного механизма, при этом "указатель" положения чувствительного элемента должен находиться на отметке шкалы "Ду"(см. приложение А), соответствующей номинальному (см. таблицу 3) или фактическому внутреннему (указанному в паспорте) диаметру трубопровода.

 $\Pi$  р и м е ч а н и е — При установке датчика расхода ЭРИС.ВЛТ на трубопровод  $\Pi_y$  200, положение "указателя" чувствительного элемента на отметке шкалы "Ду" должно соответствовать значению —  $4,15\cdot\Pi_i$ , где  $\Pi_i$  — фактическое значение внутреннего диаметра трубопровода в миллиметрах, пример: для  $\Pi_i$  = 200 мм (номинал) "указатель" должен быть установлен на отметку 830 шкалы "Ду".

2.2.4 Определить среднее значение внутреннего диаметра измерительного участка трубопровода, по возможности в измерительном сечении. Измерение производить нутромером НИ ГОСТ 868-82 или аналогичным в четырех направлениях через каждые 45°. Допускается определение внутреннего диаметра трубопровода измерением наружного периметра и толщины стенки трубопровода. Наружная поверхность трубопровода должна быть тщательно зачищена и не иметь вмятин и выступов. Толщину стенки измерить ультразву-

ковым толщиномером или микрометром. Измерение периметра производить металлической рулеткой по ГОСТ 7502-98.

Значение внутреннего диаметра трубопровода определить с точностью:

- до 0,25 мм для трубопроводов с диаметром условного прохода Ду из ряда 100, 150, 200, 300 мм;
- до 1 мм для трубопроводов с диаметром условного прохода Ду из ряда 400, 500, 600, 700, 800, 1000 мм;
- до 2 мм для трубопроводов с диаметром условного прохода Ду из ряда 1200, 1400, 1600, 1800, 2000 мм.

При установке датчика расхода, отградуированного на номинал типоразмера, необходимо, при разности значений фактического (измеренного) внутреннего диаметра  $Д_i$  и номинального диаметра:

- для ряда 100, 150, 200 и 300 мм более чем на 0,25 мм;
- для ряда 400, 500, 600, 700, 800 и 1000 мм более чем на 1 мм;
- для ряда 1200, 1400, 1600, 1800, 2000 мм более чем на 2 мм; определить поправочный коэффициент преобразования датчика расхода  $K_s$  по таблице В.1 или формуле (В.1) приложения В.
- 2.2.5 Для датчика расхода, входящего в состав расходомера или счётчика тепловой энергии, необходимо произвести электрические соединения в соответствии со схемами, приведенными в эксплуатационной документации на данные типы изделий.
- 2.2.6 При использовании датчика расхода для измерения расхода жидкости без специального вторичного преобразователя электрическое подключение произвести в соответствии с рисунком Г.1 приложения Г.

### 2.3 Использование изделия

2.3.1 Определение расхода Q, в м $^3$ /ч, без использования вторичных преобразователей производится по формуле (1) или (2)

$$Q = K_s \frac{3.6 \cdot f}{K_{DD}} \tag{1}$$

$$Q = K_{s} \cdot \frac{56,25 \cdot (I - 4)}{K_{Ap}}, \tag{2}$$

где f - частота изменения импульсной последовательности с выхода датчика расхода,  $\Gamma$ ц;

*I* - ток на выходе датчика расхода, мА;

 $K_s$  - поправочный коэффициент (см. приложение B): для датчика расхода отградуированного на фактический внутренний диаметр трубопровода коэффициент  $K_s$  равен 1,0;

 К<sub>др</sub> - номинальный статический коэффициент преобразования датчика расхода по частотному выходу, см. таблицу 3.

2.3.2 Погрешность датчика расхода в условиях эксплуатации  $\delta_{\scriptscriptstyle 9}$  определяется по формуле

$$\pi_{3} = \sqrt{\pi_{0}^{2} + \pi_{cp}^{2} + \pi_{0kp}^{2} + \pi_{np}^{2} + \pi_{s}^{2}},$$
(3)

где  $\delta_o$  - основная погрешность датчика расхода, %;

 $\delta_{\rm cp}$  - дополнительная погрешность датчика расхода от изменения температуры измеряемой среды, (0,065 % на каждые 10 °C изменения температуры от нормальных условий "20°C"), %;

 $\delta_{\text{окр}}$  - дополнительная погрешность датчика расхода от изменения температуры окружающего воздуха, (0,1 % на каждые 10 °C изменения температуры от нормальных условий "20°C"), %;

 $\delta_{\text{пр}}$  - дополнительная погрешность датчика расхода от изменения электрической проводимости измеряемой среды, (0,3 % при изменении в 10 раз, нормальные условия - " $6\cdot10^{-2}$  См/м");

 $\delta_{s}$  - погрешность определения сечения трубопровода, предельное значение 0,5 %.

### 3 Поверка

3.1 Поверке подлежат датчики расхода при выпуске из производства, находящиеся в эксплуатации, на хранении и выпускаемые из ремонта.

Межповерочный интервал - два года.

3.2 Поверка датчика расхода проводится в соответствии с документом 230.00.00.000 МИ "Рекомендация. ГСИ. Расходомеры электромагнитные ЭРИС.В. Методика поверки".

### 4 Техническое обслуживание

- 4.1 Обслуживание датчика расхода в процессе эксплуатации заключается в периодических осмотрах, не реже одного раза в шесть месяцев:
  - состояния герметизирующих элементов датчика расхода;
- состояния наружных поверхностей, отсутствие вмятин, следов коррозии и других повреждений;
  - целостности соединительного кабеля и надежности соединений;
  - целостности заземления.
- 4.2 Осмотр датчика расхода при работе на средах, вызывающих отложения на чувствительном элементе, должен производиться в следующей последовательности.
  - 4.2.1 Датчика расхода ЭРИС.ВТ-100...1000:
- отключить от датчика расхода соединительный кабель и провод заземления датчика расхода и отсоединить заземляющее устройство;
  - остановить перекачку жидкости по трубопроводу;
  - убедиться в отсутствии избыточного давления в трубопроводе;
  - отвернуть крепёж и извлечь датчик расхода;
  - на место датчика расхода установить заглушку.
  - 4.2.2 Датчика расхода ЭРИС.ВЛТ:
- отключить от датчика расхода соединительный кабель и провод заземления;

- с помощью гайки передвижного устройства установить стрелку указателя диаметра условного прохода трубопровода в крайнее верхнее положение;
  - перевести шаровой кран в положение "закрыто";
- "стравить" давление с помощью ниппеля, расположенного на корпусе преобразователя расхода;
  - отсоединить датчик расхода, а на его место установить заглушку.

Осмотреть рабочие поверхности чувствительного элемента датчика расхода, удалить механические отложения и налет промыванием чистым этиловым спиртом ГОСТ Р 51652-2000 или бензином А-72 ГОСТ Р 51105-97 в количестве 50 г на датчик расхода.

Осмотреть состояние клеммных соединений и при необходимости промыть контакты спиртом ГОСТ 17299-78.

- 4.3 Установить датчик расхода на рабочее место, подсоединить заземляющее устройство и соединительный кабель к датчику расхода.
- 4.4 Осмотр и ремонт, связанные со вскрытием составных частей датчика расхода, проводить только в специализированной мастерской.
- 4.5 При выходе из строя в течение гарантийного срока эксплуатации датчик расхода или его составные части должны быть отправлены на предприятие-изготовитель с приложением акта и паспорта с отметкой о характере не-исправности.

#### 5 Хранение

- 5.1 Датчик расхода должен храниться на стеллаже в упакованном виде в сухом отапливаемом помещении при температуре окружающего воздуха от плюс 5 до плюс 40 °C и относительной влажности до 80 %. Воздух не должен иметь примесей агрессивных паров и газов. Группа условий хранения 1(Л) по ГОСТ 15150-69.
- 5.2 Обслуживание датчика расхода во время хранения не предусматривается. Срок хранения 8 лет.

#### 6 Транспортирование

6.1 Транспортирование датчика расхода должно производиться в упаковке в контейнерах, закрытых железнодорожных вагонах, в трюмах речных и морских судов, в герметизированных отапливаемых отсеках самолетов и автомобильным транспортом с защитой от атмосферных осадков.

При погрузке и выгрузке необходимо соблюдать требования, оговоренные предупредительными знаками на таре.

- 6.2 Транспортирование датчика расхода по грунтовым дорогам допускается в кузове грузового автомобиля на расстояние до 500 км со скоростью до 40 км/ч.
  - 6.3 При транспортировании датчика расхода должны соблюдаться:
- "Общие правила перевозок грузов автомобильным транспортом", утвержденные Министерством автомобильного транспорта РСФСР 30 июля 1971г;
- "Технические условия погрузки и крепления грузов", М., "Транспорт", 1978г;
- "Правила перевозки грузов", утвержденные Министерством речного флота РСФСР приказ № 144 от 14 августа 1978г;
- "Общие и специальные правила перевозки грузов", утвержденные Министерством морского флота РСФСР в 1979 г.

### ПРИЛОЖЕНИЕ А (обязательное)

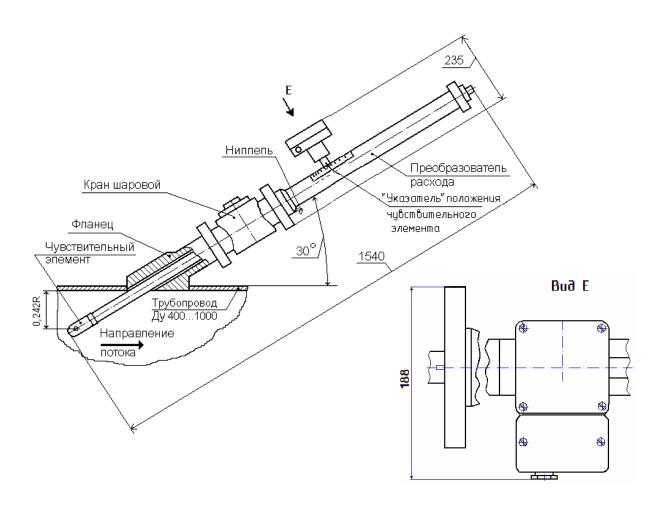



Рисунок А.1 - Датчик расхода ЭРИС.ВЛТ. Общий вид (в рабочем состоянии)

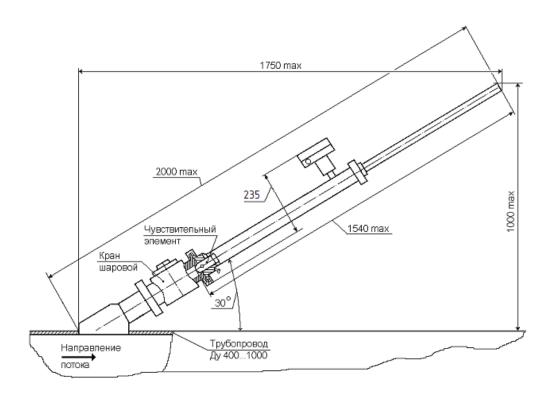
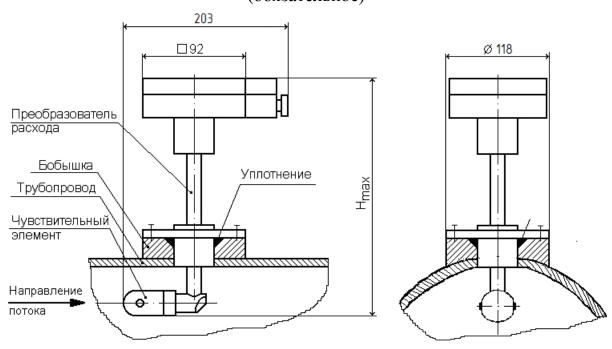
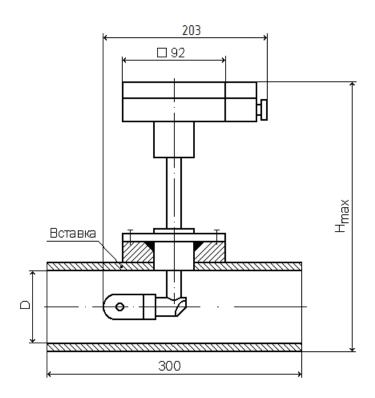





Рисунок А.1.1 – Датчик расхода ЭРИС.ВЛТ. Общий вид (в закрытом состоянии)



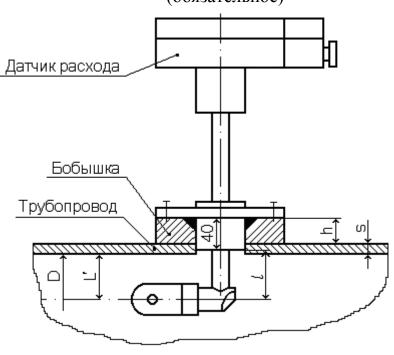
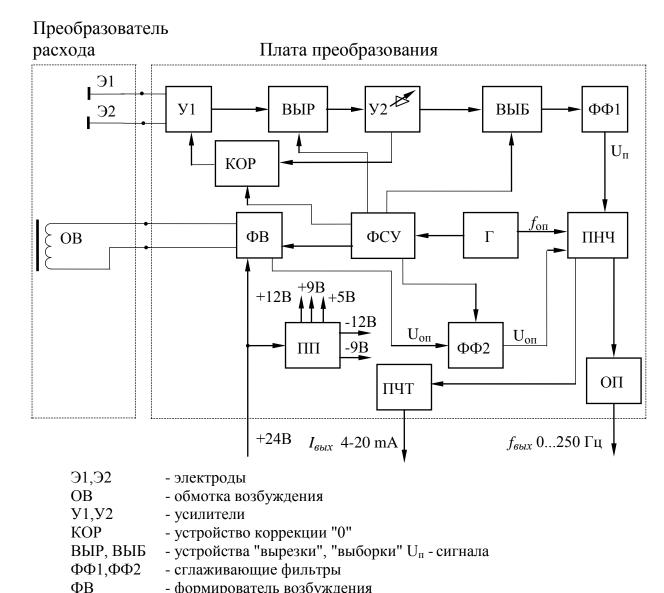

| Типоразмер   | Н <sub>тах</sub> , мм |
|--------------|-----------------------|
| ЭРИС.ВТ-100  | 295                   |
| ЭРИС.ВТ-150  | 319                   |
| ЭРИС.ВТ-200  | 344                   |
| ЭРИС.ВТ-300  | 394                   |
| ЭРИС.ВТ-400  | 292                   |
| ЭРИС.ВТ-500  | 304                   |
| ЭРИС.ВТ-600  | 314                   |
| ЭРИС.ВТ-700  | 329                   |
| ЭРИС.ВТ-800  | 339                   |
| ЭРИС.ВТ-1000 | 365                   |

Рисунок А.2 - Датчик расхода ЭРИС.ВТ-100...1000. Общий вид



| Типоразмер  | D, мм | Н <sub>тах</sub> , мм |
|-------------|-------|-----------------------|
| ЭРИС.ВТ-100 | 100   | 328                   |
| ЭРИС.ВТ-150 | 150   | 376                   |
| ЭРИС.ВТ-200 | 200   | 434                   |


Рисунок А.3 - Датчик расхода ЭРИС.ВТ-100...200 (со вставкой). Общий вид



| Типоразмер   | D, мм | l, mm | h, мм |
|--------------|-------|-------|-------|
| ЭРИС.ВТ-100  | 100   | 50    | 35    |
| ЭРИС.ВТ-150  | 150   | 75    | 32    |
| ЭРИС.ВТ-200  | 200   | 100   |       |
| ЭРИС.ВТ-300  | 300   | 150   |       |
| ЭРИС.ВТ-400  | 400   | 48    |       |
| ЭРИС.ВТ-500  | 500   | 60    | 30    |
| ЭРИС.ВТ-600  | 600   | 70    |       |
| ЭРИС.ВТ-700  | 700   | 85    |       |
| ЭРИС.ВТ-800  | 800   | 95    |       |
| ЭРИС.ВТ-1000 | 1000  | 121   |       |

Рисунок А.4 - Датчик расхода ЭРИС.ВТ. Определение расстояния L, от оси чувствительного элемента датчика расхода до внутренней стенки реального трубопровода.

### ПРИЛОЖЕНИЕ Б (обязательное)



ФВ - формирователь возбуждения ФСУ - формирователь сигналов управления ПП - преобразователь питания

 $\Gamma & - \ \ \, \mbox{кварцевый генератор} \\ U_{\mbox{\tiny II}}, \, U_{\mbox{\tiny OII}} & - \, \mbox{"полезный", "опорный" сигналы}$ 

 $f_{\text{вых}}$  - частотный выход  $0...250~\Gamma$ ц

 ${
m f}_{
m on}$  - опорная частота

 $I_{\text{вых}}$  - токовый выход 4-20 mA

ПНЧ - преобразователь напряжений в частоту

ПЧТ - преобразователь частоты в ток

ОП - оптронный ключ

Рисунок Б.1 - Датчик расхода. Схема электрическая функциональная.

## ПРИЛОЖЕНИЕ В (справочное)

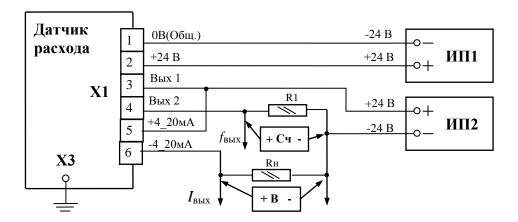
Таблица В.1 – Коэффициенты поправки показаний датчика расхода

| Т                    | Tx: 400     | Т                    | Iv 500                   | п                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | v 600     | п                    | y-700  | . т                  | Iv SUU       | π.                   | y-1000         |
|----------------------|-------------|----------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------|--------|----------------------|--------------|----------------------|----------------|
| T .                  | Ly-400<br>ν |                      | [y-500<br>  <sub>V</sub> | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | y-600<br> |                      | Ĭ      |                      | [y-800<br>г/ |                      |                |
| Д <sub>і</sub><br>мм | $K_s$       | Д <sub>і</sub><br>мм | $K_s$                    | $egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egin{aligned} egin{aligned} egin{aligned} eg$ | $K_s$     | Д <sub>і</sub><br>мм | $K_s$  | Д <sub>і</sub><br>мм | $K_s$        | Д <sub>і</sub><br>мм | K <sub>s</sub> |
| 380                  | 0,8974      | 480                  | 0,9175                   | 580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,9310    | 680                  | 0,9407 | 780                  | 0,9480       | 980                  | 0,9583         |
| 381                  | 0,9024      | 481                  | 0,9215                   | 581                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,9344    | 681                  | 0,9436 | 781                  | 0,9505       | 981                  | 0,9603         |
| 382                  | 0,9074      | 482                  | 0,9256                   | 582                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,9378    | 682                  | 0,9465 | 782                  | 0,9531       | 982                  | 0,9624         |
| 383                  | 0,9124      | 483                  | 0,9296                   | 583                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,9412    | 683                  | 0,9494 | 783                  | 0,9557       | 983                  | 0,9645         |
| 384                  | 0,9175      | 484                  | 0,9337                   | 584                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,9446    | 684                  | 0,9524 | 784                  | 0,9583       | 984                  | 0,9665         |
| 385                  | 0,9225      | 485                  | 0,9378                   | 585                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,9480    | 685                  | 0,9553 | 785                  | 0,9608       | 985                  | 0,9686         |
| 386                  | 0,9276      | 486                  | 0,9418                   | 586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,9514    | 686                  | 0,9583 | 786                  | 0,9634       | 986                  | 0,9707         |
| 387                  | 0,9327      | 487                  | 0,9459                   | 587                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,9548    | 687                  | 0,9612 | 787                  | 0,9660       | 987                  | 0,9728         |
| 388                  | 0,9378      | 488                  | 0,9500                   | 588                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,9583    | 688                  | 0,9642 | 788                  | 0,9686       | 988                  | 0,9748         |
| 389                  | 0,9429      | 489                  | 0,9541                   | 589                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,9617    | 689                  | 0,9671 | 789                  | 0,9712       | 989                  | 0,9769         |
| 390                  | 0,9480      | 490                  | 0,9583                   | 590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,9652    | 690                  | 0,9701 | 790                  | 0,9738       | 990                  | 0,9790         |
| 391                  | 0,9531      | 491                  | 0,9624                   | 591                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,9686    | 691                  | 0,9731 | 791                  | 0,9764       | 991                  | 0,9811         |
| 392                  | 0,9583      | 492                  | 0,9665                   | 592                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,9721    | 692                  | 0,9760 | 792                  | 0,9790       | 992                  | 0,9832         |
| 393                  | 0,9634      | 493                  | 0,9707                   | 593                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,9755    | 693                  | 0,9790 | 793                  | 0,9816       | 993                  | 0,9853         |
| 394                  | 0,9686      | 494                  | 0,9748                   | 594                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,9790    | 694                  | 0,9820 | 794                  | 0,9842       | 994                  | 0,9874         |
| 395                  | 0,9738      | 495                  | 0,9790                   | 595                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,9825    | 695                  | 0,9850 | 795                  | 0,9869       | 995                  | 0,9895         |
| 396                  | 0,9790      | 496                  | 0,9832                   | 596                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,9860    | 696                  | 0,9880 | 796                  | 0,9895       | 996                  | 0,9916         |
| 397                  | 0,9842      | 497                  | 0,9874                   | 597                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,9895    | 697                  | 0,9910 | 797                  | 0,9921       | 997                  | 0,9937         |
| 398                  | 0,9895      | 498                  | 0,9916                   | 598                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,9930    | 698                  | 0,9940 | 798                  | 0,9947       | 998                  | 0,9958         |
| 399                  | 0,9947      | 499                  | 0,9958                   | 599                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,9965    | 699                  | 0,9970 | 799                  | 0,9974       | 999                  | 0,9979         |
| 400                  | 1,0000      | 500                  | 1,0000                   | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,0000    | 700                  | 1,0000 | 800                  | 1,0000       | 1000                 | 1,0000         |
| 401                  | 1,0053      | 501                  | 1,0042                   | 601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,0035    | 701                  | 1,0030 | 801                  | 1,0026       | 1001                 | 1,0021         |
| 402                  | 1,0106      | 502                  | 1,0085                   | 602                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,0070    | 702                  | 1,0060 | 802                  | 1,0053       | 1002                 | 1,0042         |
| 403                  | 1,0159      | 503                  | 1,0127                   | 603                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,0106    | 703                  | 1,0091 | 803                  | 1,0079       | 1003                 | 1,0063         |
| 404                  | 1,0212      | 504                  | 1,0170                   | 604                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,0141    | 704                  | 1,0121 | 804                  | 1,0106       | 1004                 | 1,0085         |
| 405                  | 1,0266      | 505                  | 1,0212                   | 605                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,0177    | 705                  | 1,0151 | 805                  | 1,0132       | 1005                 | 1,0106         |
| 406                  | 1,0319      | 506                  | 1,0255                   | 606                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,0212    | 706                  | 1,0182 | 806                  | 1,0159       | 1006                 | 1,0127         |
| 407                  | 1,0373      | 507                  | 1,0298                   | 607                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,0248    | 707                  | 1,0212 | 807                  | 1,0186       | 1007                 | 1,0148         |
| 408                  | 1,0427      | 508                  | 1,0341                   | 608                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,0283    | 708                  | 1,0243 | 808                  | 1,0212       | 1008                 | 1,0170         |
| 409                  | 1,0481      | 509                  | 1,0384                   | 609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,0319    | 709                  | 1,0273 | 809                  | 1,0239       | 1009                 | 1,0191         |
| 410                  | 1,0535      | 510                  | 1,0427                   | 610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,0355    | 710                  | 1,0304 | 810                  | 1,0266       | 1010                 | 1,0212         |
| 411                  | 1,0589      | 511                  | 1,0470                   | 611                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,0391    | 711                  | 1,0334 | 811                  | 1,0292       | 1011                 | 1,0234         |
| 412                  | 1,0644      | 512                  | 1,0513                   | 612                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,0427    | 712                  | 1,0365 | 812                  | 1,0319       | 1012                 | 1,0255         |
| ı                    | 1           |                      | ı İ                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | l         |                      | ı l    |                      | l            | I                    | ı <b>I</b>     |

### ПРОДОЛЖЕНИЕ ПРИЛОЖЕНИЯ В (справочное)

| Продолжение | таблицы | B.1 |
|-------------|---------|-----|
|-------------|---------|-----|

| Ду  | -400   | Ду              | -500   | Ду-    | 600    | Ду- | -700   | Ду              | -800   | Ду   | ·-1000 |
|-----|--------|-----------------|--------|--------|--------|-----|--------|-----------------|--------|------|--------|
| Ді  | $K_s$  | $\mathcal{A}_i$ | $K_s$  | Д $_i$ | $K_s$  | Ді  | $K_s$  | $\mathcal{L}_i$ | $K_s$  | Ді   | $K_s$  |
| MM  |        | MM              |        | MM     |        | MM  |        | MM              |        | MM   |        |
| 413 | 1,0698 | 513             | 1,0557 | 613    | 1,0463 | 713 | 1,0396 | 813             | 1,0346 | 1013 | 1,0276 |
| 414 | 1,0753 | 514             | 1,0600 | 614    | 1,0499 | 714 | 1,0427 | 814             | 1,0373 | 1014 | 1,0298 |
| 415 | 1,0808 | 515             | 1,0644 | 615    | 1,0535 | 715 | 1,0458 | 815             | 1,0400 | 1015 | 1,0319 |
| 416 | 1,0863 | 516             | 1,0687 | 616    | 1,0571 | 716 | 1,0488 | 816             | 1,0427 | 1016 | 1,0341 |
| 417 | 1,0918 | 517             | 1,0731 | 617    | 1,0607 | 717 | 1,0519 | 817             | 1,0454 | 1017 | 1,0362 |
| 418 | 1,0973 | 518             | 1,0775 | 618    | 1,0644 | 718 | 1,0550 | 818             | 1,0481 | 1018 | 1,0384 |
| 419 | 1,1029 | 519             | 1,0819 | 619    | 1,0680 | 719 | 1,0581 | 819             | 1,0508 | 1019 | 1,0405 |
| 420 | 1,1084 | 520             | 1,0863 | 620    | 1,0716 | 720 | 1,0612 | 820             | 1,0535 | 1020 | 1,0427 |


В общем случае поправочный коэффициент К<sub>s</sub> определяется по формуле

$$K_s = ({\mu_i}^2 - 0.0013)/({\mu_v}^2 - 0.0013) \cdot (2L/{\mu_i})^{-0.11} \cdot k_L$$
 (B.1)

где  $Д_i$  - среднее значение фактического внутреннего диаметра трубопровода в измерительном сечении, м;

- Ду среднее значение номинального внутреннего диаметра трубопровода, указанного в паспорте на датчик расхода, м;
- расстояние от внутренней стенки трубопровода до оси чувствительного элемента датчика расхода (см. приложение А, Рисунок А.4), м;
- $k_L$  коэффициент, равный:
  - 1,0 для варианта расположения чувствительного элемента датчика расхода на оси трубопровода (L=R);
  - 0,8555 для варианта расположения чувствительного элемента датчика расхода в точке L=0,242R.

### ПРИЛОЖЕНИЕ Г (обязательное)



ИП1,ИП2 - источники питания типа Б5-47 (0...30)В 3.233.220 ТУ;
 Резистор марки С2-23 (3±1) кОм или аналогичный;

Rн - сопротивление нагрузки токового выхода;
Сч - частотомер типа Ч3-63/1 ДЛИ2.721.007 ТУ;

В - вольтметр универсальный типа В7-38 Гр2.710.031 ТУ

 $I_{
m Bыx}$  - выходной токовый сигнал; - выходной частотный сигнал.

Рисунок Г.1 - Датчик расхода. Схема электрическая соединений и подключения без вторичного преобразователя

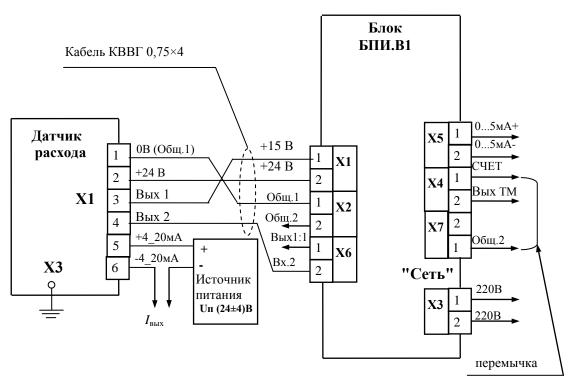



Рисунок Г.2 – Датчик расхода. Схема электрическая соединений и подключения с блоком БПИ.В1

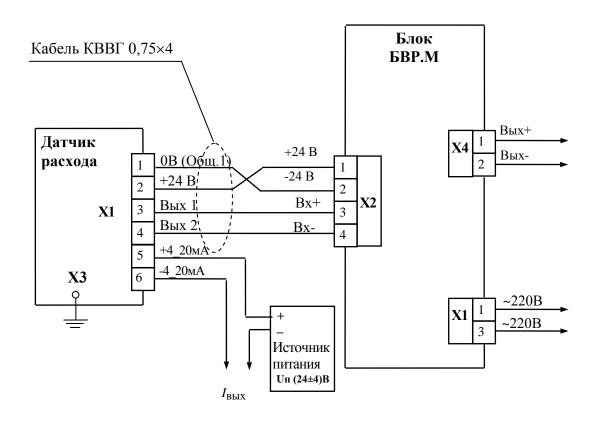
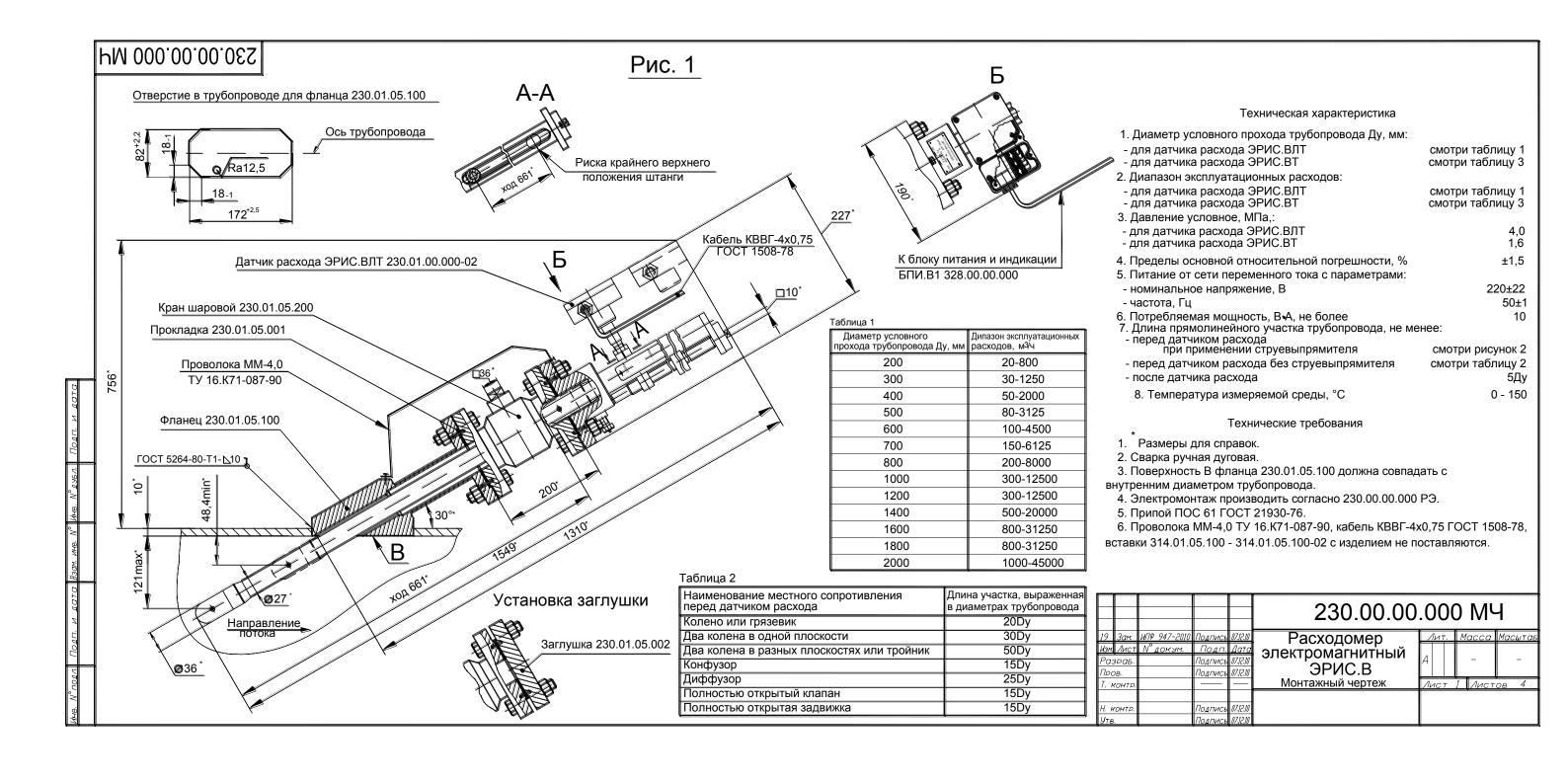
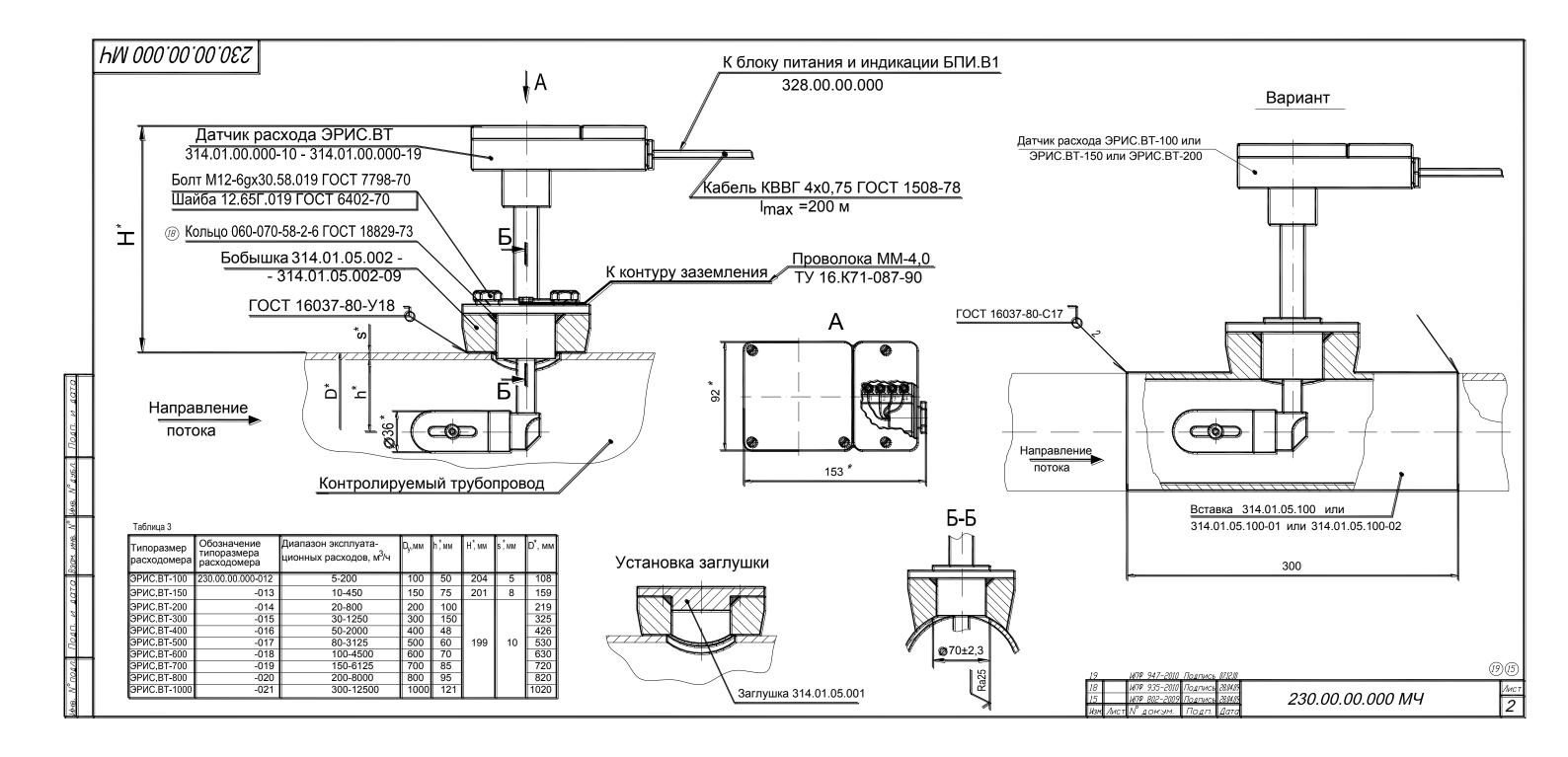


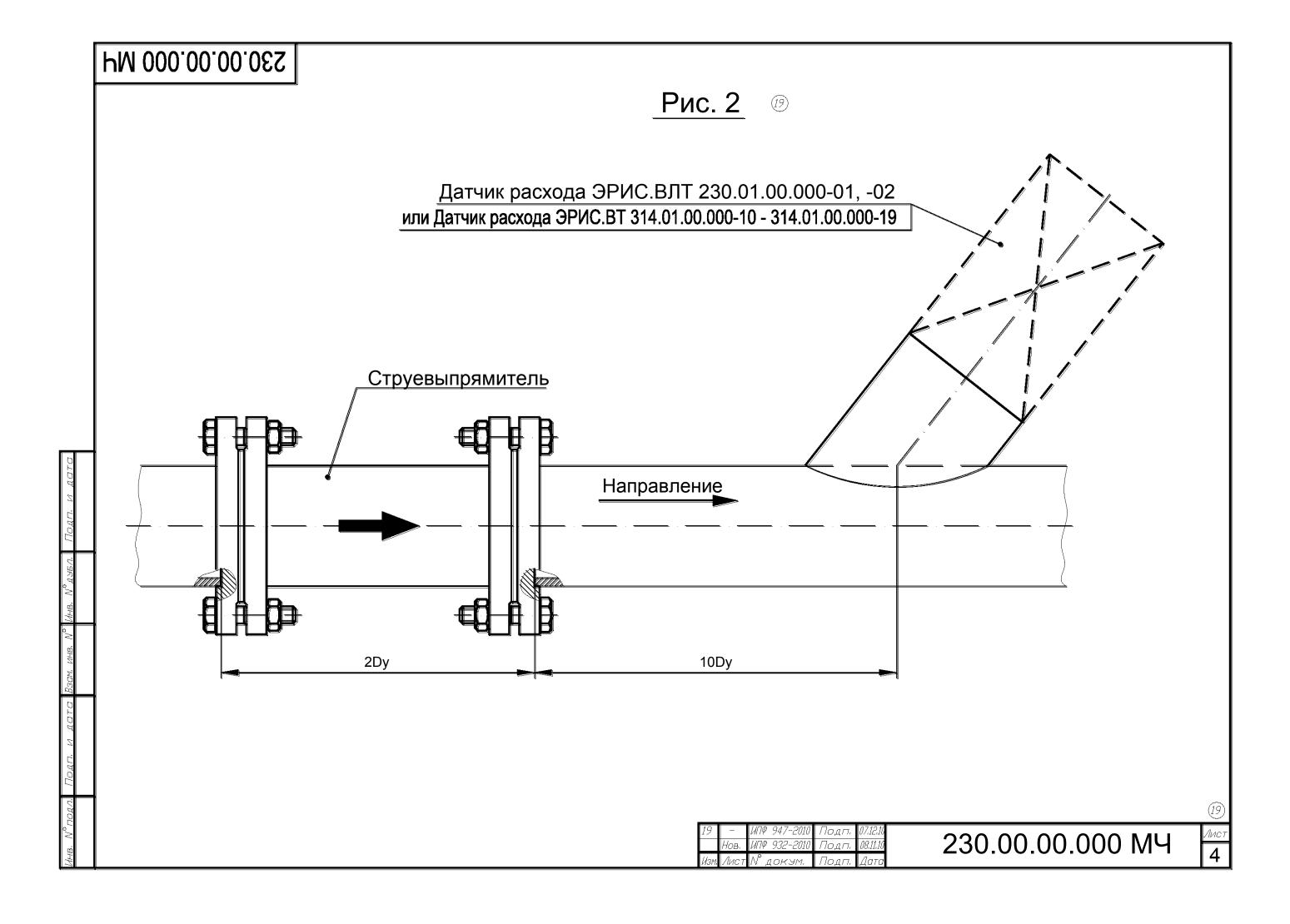

Рисунок Г.3 – Датчик расхода. Схема электрическая соединений и подключения с блоком БВР.М

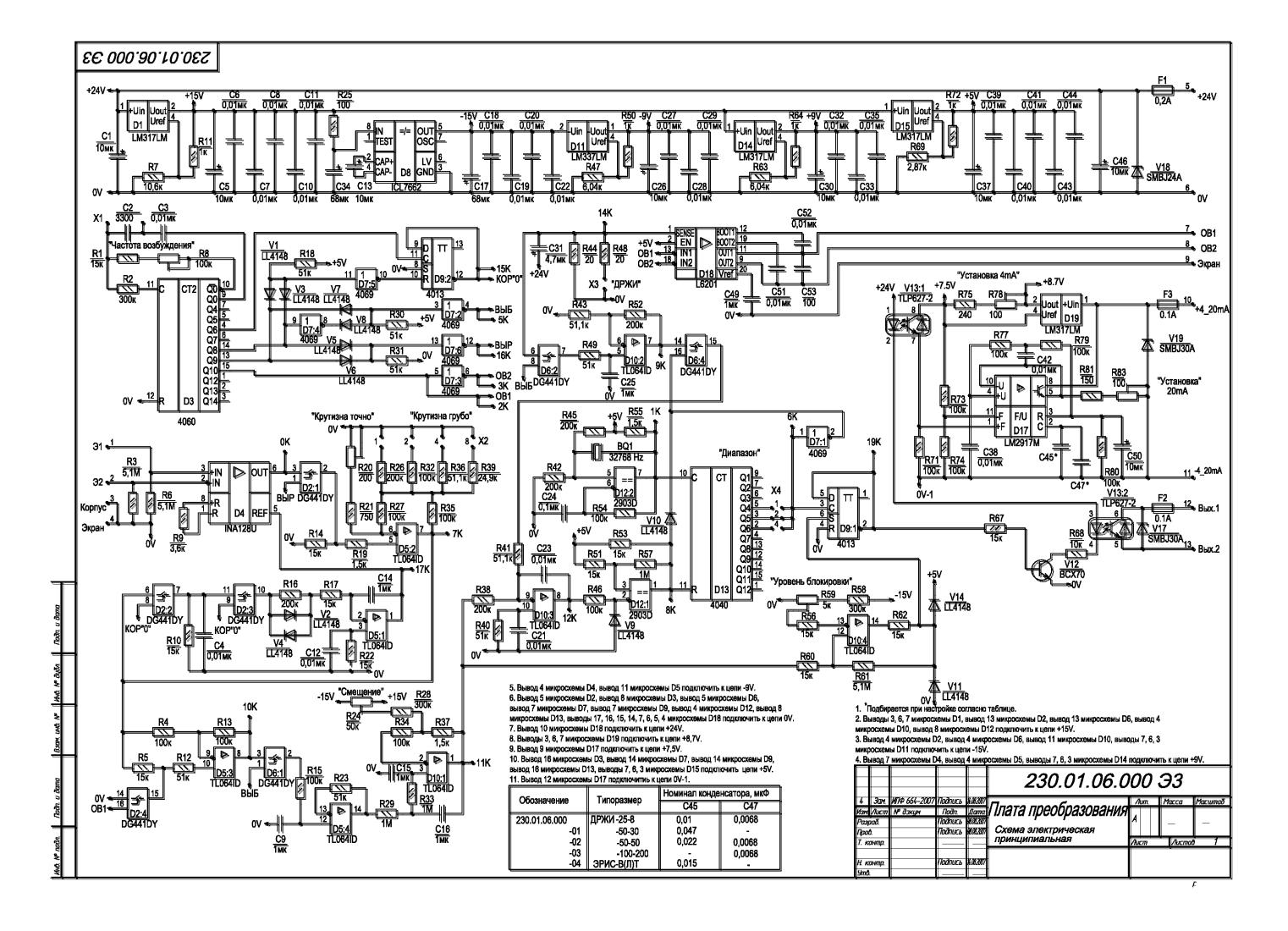
#### По вопросам продаж и поддержки обращайтесь:

Архангельск +7 (8182) 45-71-35 Астрахань +7 (8512) 99-46-80 Барнаул +7 (3852) 37-96-76 Белгород +7 (4722) 20-58-80 Брянск +7 (4832) 32-17-25 Владивосток +7 (4232) 49-26-85 Волгоград +7 (8442) 45-94-42 Екатеринбург +7 (343) 302-14-75 Ижевск +7 (3412) 20-90-75 Казань +7 (843) 207-19-05 Калуга +7 (4842) 33-35-03


Кемерово +7 (3842) 21-56-70 Киров +7 (8332) 20-58-70 Краснодар +7 (861) 238-86-59 Красноярск +7 (391) 989-82-67 Курск +7 (4712) 23-80-45 Липецк +7 (4742) 20-01-75 Магнитогорск +7 (3519) 51-02-81 Москва +7 (499) 404-24-72 Мурманск +7 (8152) 65-52-70 Наб.Челны +7 (8552) 91-01-32 Ниж.Новгород +7 (831) 200-34-65


Омск +7 (381) 299-16-70 Орел +7 (4862) 22-23-86 Оренбург +7 (3532) 48-64-35 Пенза +7 (8412) 23-52-98 Пермь +7 (342) 233-81-65 Ростов-на-Дону +7 (863) 309-14-65 Рязань +7 (4912) 77-61-95 Самара +7 (846) 219-28-25 Санкт-Петербург +7 (812) 660-57-09 Саратов +7 (845) 239-86-35


Новосибирск +7 (383) 235-95-48


Сочи +7 (862) 279-22-65 Ставрополь +7 (8652) 57-76-63 Сургут +7 (3462) 77-96-35 Тверь +7 (4822) 39-50-56 Томск +7 (3822) 48-95-05 Тула +7 (4872) 44-05-30 Тюмень +7 (3452) 56-94-75 Ульяновск +7 (8422) 42-51-95 Уфа +7 (347) 258-82-65 Хабаровск +7 (421) 292-95-69 Челябинск +7 (351) 277-89-65 Ярославль +7 (4852) 67-02-35

сайт: sibneft.pro-solution.ru | эл. почта: sna@pro-solution.ru телефон: 8 800 511 88 70







